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1. Introduction

Charged lepton Bremsstrahlung on nuclei has been studied both theoretically and exper-

imentally for many years (see e.g. textbooks [1, 2] and references therein). This process

contributes to energy losses of a lepton propagation through matter, which is relevant for

many applications.

The similar process of high energy pion bremsstrahlung is used for extraction of pion

polarizability [3, 4]. In the modern COMPASS experiment [5, 6] the muon bremsstrahlung

is used as a reference cross section and for estimates of systematic uncertainties. For

this reason differential distribution of the muon bremsstrahlung should be predicted with

high accuracy. That requires to take into account several effects beyond the tree-level

Born approximation. So one needs to consider multiple photon exchange with the nucleus

(important for large Z values), electromagnetic nuclear elastic and inelastic form factors,

screening of the nucleus by the electrons surrounding it, and inelastic interactions of the

projectile particle with the atomic electrons (see ref. [8] and references therein). Besides

those, we have to take into account also the vacuum polarization in the exchanged photon

and at least one-loop radiative corrections to the lepton tensor. In this paper a new

calculation of the latter is presented.

Ref. [9] gives a comprehensive report on the calculation of one-loop corrections to

virtual Compton scattering (ep → epγ). The lepton bremsstrahlung on a heavy nucleus we

met here is a specific case of the general problem. Results of ref. [9] for the Compton tensor

can’t be directly applied to the problem under consideration, since the actual kinematical

conditions (see eq. (2.6) below) deserve a special treatment. The latter includes keeping an

exact dependence on the lepton mass and providing numerical stability of the corresponding

computer code.
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Since for this kinematical region we have to keep the exact dependence on the lepton

mass, analytic formulae for the corrections become lengthy and cumbersome. Moreover to

provide a possibility to impose various experimental cuts, we perform integration over the

final state phase space numerically.

The paper is organized as follows. In the next section we give the notation and the

explicit expression for the Born cross section. Section 3 presents the calculation of various

radiative correction contributions: the one due to a single virtual loop, the one due to

additional soft photon emission, and the one due to double bremsstrahlung. Numerical

results and conclusions are given in the last section.

2. Preliminaries

At the Born level we can represent the differential spectrum of the hard photon produced

in the process

l(p1) + A(P ) → l(p2) + γ(k) + A(P ′) (2.1)

in the form [1, 2]
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dω
=
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1∫
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,(2.2)

where ω = k0 is the emitted photon energy; ϕ is the azimuthal angle of the scattered

lepton; Z is the nucleus charge; m is the lepton mass; E1(2) and p1(2) are the energies and

4-momenta of the projectile (scattered) leptons,

c1,2 = cos(k̂p1,2), s1,2 = sin(k̂p1,2), χ1,2 = kp1,2, Q2 = −(p1 − p2 − k)2. (2.3)

Here and in what follows, it is assumed that the lepton mass is small compared with the

atom mass, while the energies are large:

m ≪ MA, E1 ≫ m, E2 ≫ m, ω ≫ m. (2.4)

Let us rewrite the Born cross section (2.2) via a set of form factors:

dσBorn

dω
=

Z2α3

2π

1∫
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1∫

−1

dc2

2π∫

0
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|p1|
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Q4

1

2e4

(
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(0)
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(0)
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2

−F
(0)
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2
1 + F

(0)
12 (qs, ts, us)E2E1 + F

(0)
21 (qs, ts, us)E1E2

)
, (2.5)

qs = 2χ2 − 2χ1 + Q2, ts = 2χ1 − m2, us = −2χ2 − m2,

where e is the electron charge. The notation in the above expression is adjusted to the

one used in the SANC [11] system, where the relevant expressions can be found as for the

Born-level form factors as well as for the ones in the one-loop approximation.
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Studying the differential distribution in the scattering angles of the Born cross section,

one can see that it is peaked in the kinematical domain, where

k̂p1,2 ∼ p̂1p2 ∼
m

E1
. (2.6)

For the case of high energy muon scattering (E1 ∼ 100 GeV) being under consideration

now, the angles become small. Moreover, one should be careful with the dependence on the

lepton mass, since m2 ∼ χ1,2 in this domain. On the other hand, we can safely drop some

terms, proportional to the small ratio m2/E2
1 . As concerning the momentum transferred,

contrary to the case of the Rutherford scattering, it can’t go down below the kinematical

threshold value

Qmin ≡
√

Q2
min =

m2ω

2E1E2
. (2.7)

In the ultra-relativistic approximation applicable in our case, after an integration over the

whole phase space, one gets the Born-level photon spectrum in the simple form

dσ

dω
=

4Z2α3

m2
µωE2

1

(
E2

1 + E2
2 −

2

3
E1E2

)
, ω = E1 − E2. (2.8)

3. One-loop corrections

We subdivide the contributions of the one-loop QED corrections into three parts: 1) the

one due to a single virtual loop; 2) the one due to soft real photon emission; 3) and the

one due to additional hard photon emission (double bremsstrahlung).

3.1 Virtual loop contribution

Representatives of the Feynman diagrams corresponding to the first type of corrections are

shown in figure 1. This contribution was computed with help of the automatized computer

system SANC [11]. The system provided the set of form factors calculated keeping the

exact dependence on the lepton mass. The form factors are expressed via a number of one-

loop master integrals (Passarino-Veltman functions), which are called from a SANC library.

The infrared divergence in the relevant integrals is regularized by a fictitious photon mass

λ. So, the virtual loop contribution takes the form

dσVirt

dω
=

Z2α3

2π

1∫
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1∫

−1

dc2

2π∫

0

dϕ
|p2|

|p1|

ω

Q4

1

16π2e4

(
F

(1)
δ (qs, ts, us) −F

(1)
11 (qs, ts, us)E

2
2

−F
(1)
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2
1 + F

(1)
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(1)
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)
. (3.1)

Here we adopt the SANC notation for the arguments and the normalization of the form

factors. More details about the evaluation of form factors for such processes within SANC

can be found in ref. [12].
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Figure 1: Representatives of Feynman amplitudes with single virtual loops.

3.2 Soft photon contribution

Using the phase space slicing method we define the soft photon contribution as the one

of the process with emission of an additional photon with energy below a certain value

ω̄, which is small compared with the beam energy. In our calculations we perform the

slicing in the laboratory reference frame where the nucleus is at rest. Using the standard

techniques of soft photon emission calculations we get the corresponding correction, which

is factorized before the Born cross section:

dσSoft

dω
= δSoft dσBorn

dω
, δSoft = −

α

4π2

(
I11 + I12 − 2I12

)
,

I11 = 4π

[
ln
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λ
+

1
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ln
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)]
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λ
+

1
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ln
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)]
,
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2π
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1
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−
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)
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(
1 −

E2
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,

β1,2 =
|p1,2|
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=

√
1 −

m2

E1,2
, a12 =

p1p2

m2

(
1 +

√
1 −

m4

(p1p2)2

)
,

v12 =
a12p1p2 − m2

a12E1 − E2
, p1p2 =

1

2
Q2 + χ2 − χ1 + m2. (3.2)

The infrared divergence of the soft photon contribution is regularized by means of a ficti-

tious photon mass λ, the same as in the virtual loop contribution. One of the internal cross

checks of the calculation is the cancellation of the dependence on this auxiliary parameter

in the the sum of two contributions.

3.3 Double bremsstrahlung contribution

Here we start with the completely differential expression for the matrix element squared.

Some of the Feynman diagrams for this process are shown in figure 2. The two photons are

treated in a symmetric way. In particular, the condition ω1,2 > ω̄ is applied for both the

photons. The identity factor 1/2! is taken into account. Cancellation of the dependence

on the parameter ω̄ is checked numerically in the sum of the soft and hard contributions.

– 4 –



J
H
E
P
0
1
(
2
0
0
8
)
0
3
1

k1 k2

+

k2 k1

+ k2

k1

+ . . .

Figure 2: Representatives of Feynman amplitudes for double bremsstrahlung.

The contributions of double real photon emission is computed by means a Monte Carlo

integrator based on the VEGAS algorithm [13]. Seven-fold integration over the whole final

state phase space (including integration of the detected photon energy) is performed. The

distribution in the detected photon energy is extracted in course of the integration using

weights provided by VEGAS for each thrown kinematical point.

4. Numerical results and conclusions

Summing up the considered above contributions we get the 1-loop corrected cross section

in the form

dσCorr

dω
=

dσBorn

dω
+

dσVirt

dω
+

dσSoft

dω
+

dσHard

dω
. (4.1)

In table 1 there are numerical results for the specific contributions obtained for the following

set of conditions:

E1 = 190GeV, Z = 82, Q2
max = 0.0075GeV2,

ω̄ = 0.001GeV, Mmax = 3.75 · mµ, P⊥
min = 0.045GeV,

ml = mµ = 0.10566GeV, (4.2)

where Mmax is the maximal allowed invariant mass of the muon plus hard photon final

state system; P⊥
min is the minimal allowed transverse momentum of the outgoing muon; Z

is the Pb nucleus charge. For the sake of simplicity, while computing the numbers for the

table we put a simple cut on the second hard photon energy: ω2 < ω1. By subscripts 1 and

2 we denote the results obtained with ω̄ = 10−3 and ω̄ = 10−4, respectively. The relative

corrections δ1,2 are computed as

δ1,2 =
dσVirt/dω + dσSoft

1,2 /dω + dσHard
1,2 /dω

dσBorn/dω
· 100%. (4.3)

For a realistic simulation of spacial resolution and cluster energy threshold of the

COMPASS calorimeter in addition to the conditions (4.2), we apply the following treatment

of events with two hard photons:

1) max(ω1, ω2) ≥ ωth, i.e. at least one of the photons should have an energy exceeding

the threshold;
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ω/E1 Born Virtual Soft1 Hard1 δ1, % Soft2 Hard2 δ2, %

0.3 15677(1) 76.8(4) - 260.1(1) 226.9(3) +0.28 -307.0(1) 273.7(3) +0.28

0.5 10836(1) 77.9(2) - 319.0(1) 280.0(3) +0.36 -377.4(1) 338.1(3) +0.36

0.7 7337.7(1) 76.9(2) - 363.3(1) 297.1(2) +0.15 -430.9(1) 364.8(2) +0.15

0.9 1267.4(1) 20.5(1) - 111.1(2) 65.9(1) −1.95 -132.4(2) 87.2(1) −1.95

Table 1: Contributions to the corrected differential cross section in pbarn/GeV versus the photon

energy fraction.
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0.15

0.2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

δ
 [

%
]

ω/E1

Figure 3: Relative contribution of one-loop corrections for realistic set-up vs. the photon energy

fraction.

2) if both the photons have energies above the threshold and the angle between their

momenta is more than θγγ , the event is dropped;

3) if the angle between their momenta is less than θγγ , the reconstructed photon energy

is taken as the sum of the two: ω = ω1 + ω2;

4) if one of the photon energies is below the threshold, the reconstructed photon energy

is taken as the sum of the two: ω = ω1 + ω2.

The parameter values correspond to one of data analysis procedures used by the COMPASS

experiment,

ωth = 7GeV, θγγ = 3 mrad. (4.4)

For the realistic set-up, the size of the resulting correction is found to be below the one

percent level. That is due to the fact that the correction is proportional to α/(2π), and in

our case there is no any enhancement factors. In particular, even so that the beam energy

is so large compared with the muon mass, the contributions of the order O
(
α ln(E2

1/m2
µ)

)

cancel out in the sum of different contributions due to destructive interference of the initial

and final state radiation. As can be seen from the table 1 at the end of the spectrum

(ω → E1), where the phase space of additional hard photon emission is vanishing, we have

a negative peak of the resulting radiation correction, which behaves there like α ln((E1 −
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ω)/E1). But this peak is effectively washed out from the end of the spectrum in figure 3,

because of the the additional conditions (4.4) on event selections.

An analogous study was performed for the case of pion bremsstrahlung in ref. [14],

where a similar behavior and magnitude of the one-loop corrections have been obtained

within the scalar QED.
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